Exportar este item: EndNote BibTex

Use este identificador para citar ou linkar para este item: http://tede.mackenzie.br/jspui/handle/tede/3405
Tipo do documento: Dissertação
Título: Big data analytics em cloud gaming: um estudo sobre o reconhecimento de padrões de jogadores
Autor: Barros, Victor Perazzolo 
Primeiro orientador: Notargiacomo, Pollyana Coelho da Silva
Primeiro membro da banca: Silva, Leandro Augusto da
Segundo membro da banca: Colugnati, Fernando Antonio Basile
Resumo: Os avanços das tecnologias de Computacão em Nuvem (Cloud Computing) e comunicações possibilitaram o conceito de Jogos em Nuvem (Cloud Gaming) se tornar uma realidade. Por meio de computadores, consoles, smartphones, tablets, smart TVs e outros equipamentos é possível acessar via streaming e utilizar jogos independentemente da capacidade computacional destes dispositivos. Os jogos são hospedados e executados em um ambiente computacional conhecido como Nuvem, a Internet é o meio de comunicação entre estes dispositivos e o jogo. No modelo conhecido como Cloud Gaming, compreendesse que os jogos são disponibilizados sob demanda para os usuários e podem ser oferecidos em larga escala. Os comandos e ações dos jogadores são enviados para servidores que processam a informação e enviam o resultado (reação) para o jogador. A quantidade de dados que são processados e armazenados nestes ambientes em Nuvem superam os limites de análise e manipulação de plataformas convencionais, porém tais dados contém informacões sobre o perfil dos jogadores, suas particularidades, ações, comportamentos e padrões que podem ser importantes quando analisados. Para uma devida compreensão e lapidação destes dados brutos, a fim de torná-los interpretáveis, se faz necessário o uso de técnicas e plataformas apropriadas para manipulação desta quantidade de dados. Estas plataformas fazem parte de um ecossistema que envolvem os conceitos de Big Data. Arquiteturas e ferramentas de Big Data, mais especificamente, o modelo denominado Big Data Analytics, são instrumentos eficazes e capazes de não somente trabalhar com estes dados, mas entender seu significado, fornecendo insumos para análise assertiva e predição de acões. O presente estudo busca compreender o funcionamento destas tecnologias e fornecer um método capaz de identificar padrões nos comportamentos e características dos jogadores em ambiente virtual. Conhecendo os padrões de diferentes usuários é possível agrupar e comparar as informações, a fim de otimizar a experiência destes usuários no jogo, aumentar a receita para os desenvolvedores e elevar o nível de controle sobre o ambiente ao ponto que seja possível de prever ações futuras dos jogadores. Os resultados obtidos são derivados de diferentes modelagens de análise utilizando a tecnologia Hadoop combinada com ferramentas de visualização de dados e informações de fontes de dados abertas, em um dataset do jogo World of Warcraft. Detecção de fraude, padrões de jogo dos usuários, insumos para prevencão de churn e relações com elementos de atratividade no jogo, são exemplos de modelagens abordadas. Nesta pesquisa foi possível mapear e identificar os padrões de comportamento dos jogadores e criar uma previsão e tendência de assiduidade sobre evasão ou permanencia de usuários no jogo.
Abstract: The advances in Cloud Computing and communication technologies enabled the concept of Cloud Gaming to become a reality. Through PCs, consoles, smartphones, tablets, smart TVs and other devices, people can access and use games via data streaming, regardless the computing power of these devices. The Internet is the fundamental way of communication between the device and the game, which is hosted and processed on an environment known as Cloud. In the Cloud Gaming model, the games are available on demand and offered in large scale to the users. The players' actions and commands are sent to servers that process the information and send the result (reaction) back to the players. The volume of data processed and stored in these Cloud environments exceeds the limits of analysis and manipulation of conventional tools, but these data contains information about the players' profile, its singularities, actions, behavior and patterns that can be valuable when analyzed. For a proper comprehension and understanding of this raw data and to make it interpretable, it is necessary to use appropriate techniques and platforms to manipulate this amount of data. These platforms belong to an ecosystem that involves the concepts of Big Data. The model known as Big Data Analytics is an effective and capable way to, not only work with these data, but understand its meaning, providing inputs for assertive analysis and predictive actions. This study searches to understand how these technologies works and propose a method capable to analyze and identify patterns in players' behavior and characteristics on a virtual environment. By knowing the patterns of different players, it is possible to group and compare information, in order to optimize the user experience, revenue for developers and raise the level of control over the environment in a way that players' actions can be predicted. The results presented are based on different analysis modeling using the Hadoop technology combined with data visualization tools and information from open data sources in a dataset of the World of Warcraft game. Fraud detection, users' game patterns, churn prevention inputs and relations with game attractiveness elements are examples of modeling used. In this research, it was possible to map and identify the players' behavior patterns and create a prediction of its frequency and tendency to evade or stay in the game.
Palavras-chave: cloud gaming
big data analytics
game streaming
reconhecimento de padrões
jogos em nuvem
Área(s) do CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Idioma: por
País: Brasil
Instituição: Universidade Presbiteriana Mackenzie
Sigla da instituição: UPM
Departamento: Escola de Engenharia Mackenzie (EE)
Programa: Engenharia Elétrica
Citação: BARROS, Victor Perazzolo. Big data analytics em cloud gaming: um estudo sobre o reconhecimento de padrões de jogadores. 2017. 83 f. Dissertação ( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo.
Tipo de acesso: Acesso Aberto
Endereço da licença: http://creativecommons.org/licenses/by-nc-nd/4.0/
URI: http://tede.mackenzie.br/jspui/handle/tede/3405
Data de defesa: 6-Fev-2017
Aparece nas coleções:Mestrado - Engenharia Elétrica e Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
VICTOR PERAZZOLO BARROS.pdfVictor Perazzolo Barros23.57 MBAdobe PDFThumbnail

Baixar/Abrir Pré-Visualizar


Este item está licenciada sob uma Licença Creative Commons Creative Commons